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Introduction. I record here a small idea that came to my attention as a result of
my effort to understand why a certain computational program proved barren.1

The child seems to me to be too cute, and potentially too useful, to be allowed
to die with his mother, so I take this opportunity to set him adrift amongst the
bulrushes.

All proceeds from the elementary integral∫ +∞

−∞
e−t2dt =

√
π

of which

eb2/4a =
√

a/π

∫ +∞

−∞
e−at2−btdt : �[a] > 0

is (complete the square, change variables) a corollary. By notational adjustment
we have

e−βx2
= 1

2
√

βπ

∫ +∞

−∞
e−t2/4βeixtdt

From ∫ +∞

−∞
e−βx2

dx =
√

π/β

we are led to construct the β-parameterized family of normalized functions

g(x, β) ≡
√

β/πe−βx2
= 1

2π

∫ +∞

−∞
e−t2/4βeixtdt

= 1
2π

∫ +∞

−∞
e−t2/4β cosxt dt (1)

1 “Toward an exact theory of lightbeams” (), page 32.
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1. The basic idea. It is a familiar fact that (Figure 1) the Gaussian functions
g(x, β) become narrower/taller as β becomes larger, and thus contrive to provide
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Figure 1: The normalized Gaussians g(x, β) become taller and
narrower as β increases, and approach δ(x) in the asymptotic limit.
Here β has been assigned the values 0.5, 1.0 and 2.0.

a “representation of the δ-function”:

lim
β↑∞

g(x, β) = δ(x)

The idea is to let the lim
β↑∞

process be applied to the right side of (1): writing

1
2π

∫ +∞

−∞
e−t2/4β cosxt dt = 1

2π

∫ +∞

−∞

{
1 − (t2/4β) + 1

2! (t2/4β)2 − · · ·
}

cosxt dt

we adopt the interpretation ∫ +∞

−∞
= lim

k↑∞

∫ +k

−k

and integrate termwise, obtaining

g(x, β) = lim
k↑∞

{
G0(x, k) − 1

4β
−1G1(x, k) + 1

32β
−2G2(x, k) − · · ·

}
(2)

with

G0(x, k) ≡ 1
2π

∫ +k

−k

cosxt dt

= sin kx

πx

G1(x, k) ≡ 1
2π

∫ +k

−k

t2 cosxt dt

=
2kx cos kx + (k2x2 − 2) sin kx

πx3
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G2(x, k) ≡ 1
2π

∫ +k

−k

t4 cosxt dt

=
4kx(k2x2 − 6) cos kx + (k4x4 − 12k2x2 + 24) sin kx

πx5

}
...

I digress to describe properties of those G-functions, though the main point of
this discussion is staring us in the face already at (2):

The functions G0(x, k), G1(x, k) and G2(x, k) are plotted in Figure 2 and
all share the same general design: in each case, the central peak becomes higher
and the oscillations tighter as the value of k increases. Though it is not obvious
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Figure 2: Graphs of (reading top to bottom) G0(x, k), G1(x, k) and
G2(x, k) with k = 1.7 and k = 2.0. The area under each of the top
curves is unity, under each of the other curves is zero. Note that the
functions Gn(x, k) take progressively longer to die as n increases.
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to the eye, we are informed by Mathematica that∫ +∞

−∞
G0(x, k) dx = 1

∫ +∞

−∞
G1(x, k) dx = 0

∫ +∞

−∞
G2(x, k) dx = 0

...

Return now to (2) and notice that the terms G1, G2, . . . are turned off in
the limit β ↑ ∞. We are left with

lim
β↑∞

[
g(x, β) ≡

√
β/πe−βx2

]
= δ(x) = lim

k↑∞

[
G0(x, k) ≡ sin kx

πx

]
(3)

One famous representation of δ(x) has here been transmuted into another.

2. The sech representation. Gaussians are by no means the only functions that
Fourier transform into rescaled replicas of themselves: a second example is
provided by the (normalized) sech distribution

s(x, β) ≡ (β/π) sechβx (4)

The following identity2 tells the story:

(β/π) sechβx = 1
2π

∫ +∞

−∞
sech(πt/2β) cosxt dt

Arguing as before, we have

= 1
2π

∫ +∞

−∞

{
1 − 1

2 (πt/2β)2 + 5
24 (πt/2β)4− · · ·

}
cosxt dt

= lim
k↑∞

{
G0(x, k) − π2

8 β−2G1(x, k) + 5π2

384β
−4G2(x, k) − · · ·

}
↓

= lim
k↑∞

[ sin kx

πx

]
= δ(x) as β ↑ ∞

The interesting point is that g(x, β) and s(x, β) give rise by this line of argument
(for evident reasons) to the same alternative representation of δ(x). Figure 3
provides a comparison of the two distributions here in question.

2 A. Erdélyi et al , Tables of Integral Transforms (), Volume 1, 1.9.1,
page 30. The topic here touched upon is developed in detail in Chapter IX,
“Self-reciprocal Functions” of E. C. Titchmarsh’ s Introduction to the Theory
of Fourier Integrals (2nd edition ).
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Figure 3: Graphical comparison of s(x, α) ≡ (α/π)sechαx with
g(x, β) ≡

√
β/πe−βx2

. In constructing the figure I have set α = 1
and tuned the value of β so as to achieve equal variance

∫ +∞

−∞
x2s(x, 1) dx =

∫ +∞

−∞
x2g(x, β) dx

which entails β = 2/π2. At the origin the sech-distribution stands
here 125% taller than the Gaussian distribution. As it happens, a
much closer approximation to the normal distribution is provided
by a properly tuned “sechsquared-distribution” (a/2)sech2ax: see in
this connection my Mathematica Lab Manual (), Lab 1A.

Fourier self-reciprocity is an interesting property when it occurs, and a
feature of both of the examples considered thus far, but it is inessential to the
essence of the story. I turn now to an example that demonstrates the point:

3. The box representation. The normalized “box function”

b(x, β) ≡
{ 0 : x < −a
β : −a < x < +a : a ≡ 1/2β
0 : +a < x

can, in the language of Mathematica, be described

b(x, β) =
Sign[a+x]+Sign[a-x]

4a

= 1
2β

{
Sign[ 1

2β + x] + Sign[ 1
2β − x]

}
(5)

Some box functions are shown on the next page. A little exploratory tinkering
(I took Erdélyi2 1.2.1, page 7 as my point of departure) supplies the identity
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Figure 4: Box functions b(x, β), drawn by Mathematica on the
basis of (5) with β = 0.1, 0.25, 0.50, 0.90.

b(x, β) = 1
2π

∫ +∞

−∞

sin(t/2β)
(t/2β)

cosxt dt

which leads us directly back again to a well-trod trail:

= 1
2π

∫ +∞

−∞

{
1 − 1

3! (t/2β)2 + 1
5! (t/2β)4− · · ·

}
cosxt dt

= lim
k↑∞

{
G0(x, k) − 1

24β
−2G1(x, k) + 1

1920β
−4G2(x, k) − · · ·

}
(6)

↓
= lim

k↑∞

[ sin kx

πx

]
= δ(x) as β ↑ ∞

4. Quick look at the landscape. Our short and easy hike has taken us already to
a viewpoint, and we stop to look around.

One gets the impression that the preceding equation describes a universal
representation of δ(x), in this sense: it will arise as a natural companion to
every statement of the form

δ(x) = lim
β↑∞

u(x, β) : u(x, •) even and Fourier transformable

In his short list3 of the formal properties of δ(x) Dirac’s first entry reads

δ(−x) = δ(x) : δ(x) is to be thought of as an even function

It becomes in this light natural to look to even representations, though it is
certainly possible (but is it ever useful?) to look to representations with odd

3 Principles of Quantum Mechanics (revised 4th edition ), page 60.
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parts—representations of the form

u(x, β) + β−1 · (any odd function of x)

But the asymptotic evaporation of the odd part would serve ultimately to bring
us right back to where we already are.

It is my impression that the idea developed above is not quite so trivial
as it might at first appear. Or—if trivial—that it may be of some value as a
“cartoon” of a this more momentous circumstance: the quantum mechanical
propagator can be developed in two quite different ways

K(x, t; y, 0) =




∑
n

e−
i
�

Entψn(x)ψ∗
n(y) : spectral representation

A(t)
∑
paths

e
i
�

S[path:(y,0)→(x,t)] : Feynman representation

The former supplies
lim
t↓0

K(x, t; y, 0) = δ(x− y)

by power series expansion in t, the latter by asymptotic expansion in t−1.

5. Contact with theory relating to the asymptotic evaluation of integrals. We put
our packs back on and head now farther up the trail, deeper into the woods . . .

Quantum mechanics has interesting (because classical!) things to say in
the limit �

–1 ↑ ∞, but its most characteristic statements arise when the limit
process is suspended . Classical analysis provides a number of techniques4 for
developing asymptotic expansions of the form

∫ b

a

f(t)eβg(t)dt ≈ I0 + β−1I1 + β−2I2 + · · ·

and it is to such statements that our methods latently apply . . . for, while we
have thus far allowed our δ -functions to prance about nakedly, it is in the
decorous shade of

∫
-signs that they properly reside, and do their work. Do they

work? I must be content here to approach the question anecdotally.

Suppose f(x) = f0 + f1x + 1
2!f2x

2 + 1
3!f3x

3 + 1
4!f4x

4. Then by direct
integration ∫ +∞

−∞
f(x)g(x, β) dx =

∫ +∞

−∞
f(x)

√
β/πe−βx2

dx

= f0 + 1
4β

−1f2 + 1
32β

−2f4

4 See, for example, A. Erdélyi, Asymptotic Expansions (), Chapter 2 or
Frank W. J. Olver, Asymptotics & Special Functions ( & ), Chapters
3, 4 & 9.
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From (2) it would follow on the other hand that

∫ +∞

−∞
f(x)g(x, β) dx

= lim
k↑∞

∫ +∞

−∞
f(x)

{
G0(x, k) − 1

4β
−1G1(x, k) + 1

32β
−2G2(x, k) − · · ·

}
dx

which, according to Mathematica , supplies

= lim
k↑∞

{πSign[k]

π
f0 − 1

4β
−1−πSign[k]

π
f2 + 1

32β
−2 +πSign[k]

π
f4 − · · ·

}
= f0 + 1

4β
−1f2 + 1

32β
−2f4

—exactly as before. The remarkable fact operative here is that

∫ +∞

−∞
Gn(x, k) 1

m!x
m dx =

{
(−1)n : m = 2n

0 : otherwise
(7)

(or so I gather on the basis of some low-order experimentation): the function
sets

{
G0(x, k), G1(x, k), G2(x, k), . . .

}
and

{
1, x, 1

2x
2, . . .

}
are, in other words,

biorthogonal .

Look to a second example: by direct integration

∫ +∞

−∞
f(x)b(x, β) dx =

∫ + 1
2β

− 1
2β

f(x)β dx

= f0 + 1
24β

−2f2 + 1
1920β

−4f4

But this is precisely the asymptotic expansion that follows from (6) by (7).


